If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6t^2+10t=0
a = -6; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-6)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-6}=\frac{-20}{-12} =1+2/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-6}=\frac{0}{-12} =0 $
| 10=(4x) | | 8+8a=32 | | (10-4x)=(10-4x) | | -3(4x-5)=-4(6x+1)+43 | | 8x+2-3x=23 | | 8=8a=32 | | 16x+x=9400 | | -5(4x-5)=-23-8x | | -11b=1.05 | | 9x+18-18=36 | | 2+15x=16x-5 | | 50=3w+11 | | -5(x-3)=-23-8x | | f26=29 | | 2x+36=8x+78 | | -44b=4.20 | | 2(5)^x=5000000 | | 9n+4-2n=n | | 8m-5=6m-16 | | -11-4x+3+7x=13 | | 9.6*10^1.3x=345 | | 2*10^.4x=1942 | | 3x+5=-2-5 | | 18=-2x+9 | | 16.2*10^4x=1942 | | 10^-2x=9.63 | | 17/2*10^.5x=273 | | 2(4x-10)=5x+4 | | 100=10(p-87) | | 10^4x=9.325 | | 2.5*10^x=9.34 | | 85=m/7+79 |